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‘‘Deeper physical insight combined with theoretical simplicity
provides the short-cuts leading immediately to the core of
extremely complex problems and to straightforward solutions. This
cannot be achieved by methods which are sophisticated and
ponderous even in simple cases. The process of thought which is
involved here may be described as ‘‘cutting through the scientific
red tape’’ and bypassing the slow grinding mills of formal scientific
knowledge. Of course, formal knowledge is essential but, as for
everything in life, the truth involves a matter of balance’’.

M. A. Biot
Acceptance speech, 1962 Timoshenko Medal
1. Introduction

In their recent paper, Hobbs et al. (2008) claim that (1) effective
viscosity ratios and power-law stress exponents for natural rocks,
as extrapolated from experimental conditions to those appropriate
for the middle to lower crust, are typically too low for folds of finite
amplitude to form according to the ‘‘traditional’’ buckle fold theory,
referred to by them as the ‘‘Biot process’’; (2) the geometry of
natural folds, in particular the rather irregular fold form and the
limited range in arclength/layer thickness ratios, cannot be
predicted from this theory; and (3) a coupled model of folding with
thermal-mechanical feedback is more appropriate for explaining
natural folds. We strongly disagree with all these statements and
show that correct application of the analytical buckling theory and
its extension to finite amplitude using numerical models based on
the same mechanical principles can explain the range of natural
fold geometries. This approach provides relatively simple and clear
insights into the fundamental processes governing such fold
.
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development. Our primary aim in this comment is to demonstrate
that the ‘‘traditional’’ theory is appropriate for explaining natural
examples. We therefore limit our discussion of the ‘‘Biot process’’ to
interfacial viscous buckling (IVB) in the absence of elastic effects, as
in the original work of Biot (1957, 1961, 1964, 1965), Sherwin and
Chapple (1968), Fletcher (1974, 1977) and Smith (1975, 1977).
However, for us the ‘‘Biot process’’ encompasses all aspects of the
mechanical folding instability, such as multilayer systems, non-
linear rheology, and finite strain effects.
2. Model of single-layer folding with thermal-mechanical
feedback

Hobbs et al. (2008) discredit the ‘‘Biot process’’ as a viable folding
mechanism without providing any sound counterarguments. They
show no natural fold or any comparison between natural examples
and numerical models that would illustrate any apparent problem
with this approach. It is not sufficient to argue that low effective
viscosity ratio between pairs of rocks may occur in nature – of
course they do, and in this case buckle folds of finite amplitude
simply do not develop (although passive amplification of irregu-
larities can still occur in high strain zones). The necessary argument
is to give examples of natural folds that have formed even when it
can be reliably established that the viscosity ratio was too low for
viscous buckling to have occurred. Such examples are not pre-
sented in the paper of Hobbs et al. (2008).

Hobbs et al. (2008) cite the absence of parasitic folds in the ‘‘Biot
process’’ as an argument. However, there are at least five ways in
which purely mechanical folding can produce parasitic folds: 1) at
large strains a fold train starts to behave as an effectively thicker
layer and larger wavelength folds develop, 2) the effective layer to
matrix viscosity ratio (R) changes due to ambient temperature
changes, 3) thickness (Frehner and Schmalholz, 2006) or 4)
viscosity (Ramberg, 1964) variations in multilayer systems or 5)

mailto:schmid@fys.uio.no
www.sciencedirect.com/science/journal/01918141
http://www.elsevier.com/locate/jsg


D.W. Schmid et al. / Journal of Structural Geology 32 (2010) 127–130128
matrix anisotropy (Kocher et al., 2008) cause the simultaneous
development of several wavelengths.

Hobbs et al. (2008) also claim that the type of boundary
condition has a crucial influence on fold development in the ‘‘Biot
process’’. Clearly, for the linear viscous case this is incorrect as the
development of fold amplitude with respect to bulk strain will
always be the same, irrespective of the type or magnitude of the
boundary conditions. They go as far as stating that ‘‘for constant
velocity and strain rate conditions amplification rates are relatively
small and realistic folds do not develop unless viscosity ratios are of the
order of 3000’’. This contradicts basically all previous analogue and
numerical folding research, where folds were readily developed for
much lower viscosity ratios for the given boundary conditions. It is
even more puzzling because their own previous (Zhang et al., 2000)
and current work also shows this, as can be seen from their Fig. 3b
for R¼ 20 folds. Note though that the ‘‘sensitivity analysis’’ pre-
sented in their Fig. 3 aims at illustrating viscous folding, but a quick
analysis (cf. Schmalholz and Podladchikov, 1999) reveals that elastic
effects are strong for these runs (especially e to f). Also, what they
call a ‘‘perturbation velocity field’’ is misleading, as it is usually
termed the ‘‘total velocity field’’ (e.g. Cobbold, 1976; Passchier et al.,
2005).

The alternative model presented by Hobbs et al. (2008) and the
specific numerical model of single-layer folding are not appropriate
either for the claimed middle to lower crustal conditions or for
explaining the micro- to mesoscale folds directly observed by field
geologists. They present a single-layer example for the case of
thermal-mechanical feedback, in which a 400 m layer of ‘‘feld-
spathic rock’’ embedded in quartzite is shortened at temperatures of
510 K to 570 K (240 �C – 300 �C). The resulting large scale structures
would usually be termed ‘‘pop-up structures’’ and the ‘‘fine scale
crenulations’’ referred to as a mesh sensitive phenomenon. In fact,
the ‘‘feldspathic rock’’ is the aplite whose creep parameters were
reported in an abstract by Shelton and Tullis (1981) and the
quartzite flow law is that of Hirth et al. (2001). From the range of
feldspar-rich rock and quartzite flow laws available, this aplite is
the weakest and this quartzite one of the strongest. The aplite –
quartzite R varies between 2 and 1.2 over the model temperature
range, and IVB is negligible, as the authors intend, to highlight the
effects of thermal-mechanical instability. The model scale is w102–
105 times larger than that at which folds are commonly observed at
Fig. 1. Single-layer folds: (a) calc-silicate layer in coarse-grained calcite marble, Adamello,
Italy; and (c) pegmatitic quartz-feldspar layer in quartz-feldspar-biotite gneiss, Roveredo, S
outcrop, hand specimen or thin section scale (Fig. 1). The temper-
ature range of 510 K to 570 K (240 �C–300 �C) is comparable to that
of the brittle-ductile transition. It is not what is expected under
middle to lower crustal conditions and is also rather low for crystal-
plastic flow of quartzite and aplite. The effects of thermal-
mechanical feedback are indeed significant at the model scale for
the chosen rock properties and rate of shortening, at which the
Peclet Number, written here as Pe ¼ W2jDxxj=k ¼ 0:9, where
initial model thickness is W¼ 3000 m, rate of shortening is the
large value jDxxj ¼ 10�13s�1and thermal conductivity is
k¼ 10�6 m2 s�1. For the single-layer folds shown in their Fig. 6, they
report jDxxj ¼ 10�15s�1, but this yields Pe w 0.009, contrary to the
reported value. The use of W rather than layer thickness H is
problematic when considering the case of a layer effectively
embedded in an infinite medium. Scaling accordingly for a layer of
thickness H¼ 4 cm, which is greater than that of any of the layers
shown in Fig. 1, yields Pe w 10�8, and the effect of thermal-
mechanical feedback is negligible, as the authors themselves point
out. Thus, unless a thermal-mechanical feedback associated with
‘‘small-scale compositional – fabric heterogeneities’’ produces
regular folding in single layers in which mean fold arclength scales
with layer thickness, a result neither adequately examined in their
paper nor intuitively plausible, the authors, discounting IVB, leave
us with no viable mechanism for the folds commonly observed in
nature!

We now show that, with proper implementation of IVB for
power-law layer and matrix pairs and with plausible creep
parameters, folds will develop with a scale and geometry directly
comparable to those formed in the middle and lower crust.

3. Arclength/thickness ratios for natural folds

Hobbs et al. (2008) assert that the mean fold arclength to
thickness ratio (FR) of natural single-layer folds is so small as to
imply that R is too low for the folds to have initiated via IVB. They
estimate R inappropriately, by equating FR with the dominant
wavelength to thickness ratio Ld/H, rather than the most-amplified
value Lp/H, which takes into account the basic-state layer-parallel
shortening. For Ld/H, they use, also inappropriately, the thin-plate
approximation (e.g. Biot, 1961). In the limit of R¼ 1, Ld/H¼ 2p for
linear viscous media, and use of the thin-plate equation to estimate
Italy; (b) pegmatitic quartz-feldspar layer in coarse-grained calcite marble, Adamello,
witzerland.



Fig. 2. Effective viscosity ratio as a function of temperature for six layer-matrix pairs at
jDxxj ¼ 10�14s�1. T covers the typical range from the brittle-ductile transition to the
base of the crust; the range considered by Hobbs et al. (2008) is underlain in gray.

Fig. 3. Single-layer numerical IVB simulations with free-slip lateral boundary condi-
tions, for the same initial random perturbation, for pure shear shortening of 50%. The
code is: R-nmatrix-nlayer. h is the average ratio of final to original layer thickness.

D.W. Schmid et al. / Journal of Structural Geology 32 (2010) 127–130 129
viscosity ratios on the assumption that observed values of fold
arclength to thickness are 2–7 (their p. 1575) is meaningless. At low
R, thick-plate results must be used (Fletcher, 1974, 1977; Smith,
1975, 1977, 1979). Since fold trains are not mathematically periodic,
it is misleading to talk of fold arclength as ‘‘wavelength’’ and FR is
used to estimate the most-amplified value LP/H (Fletcher and
Sherwin, 1978).

Reported values obtained for FR are 4.0, 4.5, 5.1, 5.2, 5.5 and 6.8
for quartz veins or quartzite layers in slate or phyllite matrix
(Sherwin and Chapple, 1968), 6.7, 9.8, 12.1, and 15.3 for quartz veins
in mafic, psammitic, and pelitic schists (Shimamoto and Hara,
1976), 6.5 and 7.1 for limestone in slate (Hudleston and Holst, 1984),
and 9.4 for limestone in shale (Fletcher, 1974). The single-layer folds
in Fig. 1 have (a)FRy12, (b)FRy6:9, and (c) FRy5:9. In summary,
these measurements show that FR ranges from 4 to 15, with
a median of 6.7. Many examples have stiff layers composed of
quartzite, vein quartz, aplite, pegmatite or limestone, for which
laboratory experiments yield power-law stress exponents (n) of
w3–4 for quartzite and �4 for coarse calcite (e.g. see compilations
in Brodie and Rutter, 2000; Evans and Kohlstedt, 1995; Kirby and
Kronenberg, 1987).

Using FR ¼ Lp=H, stress exponent n¼ 3 for layer and matrix, and
requiring a maximum amplification Amax¼ 50 to achieve selectivity
appropriate to natural single-layer folds, the thick-plate result,
which accounts for uniform layer-parallel shortening in the low
limb-dip phase of wavelength selection, provides estimates of both
R and the layer-parallel shortening. This is a variant of what authors
of the above-mentioned papers, including Sherwin and Chapple
(1968), did to estimate R. For Lp/H¼ 4, 5, 6, 7, 10, 12 and 15, we
obtain R¼ 6.5, 10, 14, 21, 51, 78 and 150 and the corresponding
layer-parallel shortenings of 43, 33, 19, 15, 12, 8 and 6%. We now
show that such viscosity ratios are attained for representative rock
pairs at temperatures (T) and rates of shortening (Dxx) typical of the
middle to lower crust.

4. Viscosity ratio for rock pairs

In Fig. 2 R is plotted as a function of T for six layer-matrix pairs
and jDxxj ¼ 10�14s�1. The additional flow laws (aplite and
quartzite are discussed above) are clinopyroxene and anorthosite
(Kirby and Kronenberg, 1987), marble (Walker et al., 1990, 1 mm
grain size), dry diabase (Mackwell et al., 1998, Columbia) , and wet
diabase (Shelton and Tullis, 1981). Note, that the stiff layer – marble
pairs show R increasing with temperature, which is so if (Q/
n)layer� (Q/n)matrix< 0, where Q is the activation energy of the
Arrhenius temperature dependence. Hobbs et al. (2008) use the
aplite – quartzite pair in their single-layer example, which yields
R� 2 over the range 510 K–570 K they consider. Their wet diabase–
aplite pair exhibits viscosity ratios in the range 500 K–700 K that
are still adequately large to produce IVB. Other suitable rock pairs in
the middle to lower crust exhibit much larger ratios. The clino-
pyroxene - marble pair is applicable to the natural example in
Fig. 1a, the quartzite-marble and anorthosite-marble pairs to that in
Fig. 1b. The dry diabase - anorthosite is representative of the
granulite facies, typical for the lower crust. Hobbs et al. (2008) view
pairs such as quartzite-schist or quartzite-marble, to be ‘‘excep-
tions’’. However, these pairs are common in nature and several of
the FR values reported above were obtained for them. The authors’
aplite-quartzite pair is rather the ‘‘exception.’’

5. Numerical models of viscous folding

Numerical and analogue models provide a definitive test of
whether folding with specified rheological parameters will occur.
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The simulations of single-layer folding (Fig. 3) were obtained using
a modified version of the FEM code MILAMIN (Dabrowski et al.,
2008), where only the uncoupled mechanical problem is solved.
Horizontal velocity at the lateral, free-slip boundaries is adjusted to
give constant mean strain rate – the case for which Hobbs et al.
(2008) claim there will be no realistic fold development unless
R� 3000. Vertical boundaries are sufficiently distant from the layer
to not affect fold growth. The same initial random perturbation (red
noise) is used in all models, with the maximum vertical variation
limited to 1/20 of the layer thickness.

Folds formed in all runs, for R as low as 8 (Fig. 3e). This is
consistent with, for example, the paraffin wax analogue experi-
ments of Cobbold (1975), where folds formed in a 10-2.6-2.6 model.
R� 20 was required to generate folds in the linear viscous case
(Fig. 3a). The folds have the moderate regularity seen in natural
counterparts, in disagreement with the statement of Hobbs et al.
(2008) that ‘‘for purely viscous materials, periodic fold geometries
result from the classical theories no matter what boundary conditions,
initial geometry or initial deviations from the ideal planar state exist’’.
The rationale for limited regularity is discussed in Biot (1961). The
growth-rate spectrum has a single maximum and a bandwidth that
is not particularly narrow for single-layer folding. At low viscosity
ratio (Hudleston, 1973; Ramberg, 1970; Sherwin and Chapple,
1968), layer thickening prior to finite amplitude buckling is
substantial and FR values as low as 4 result (Fig. 3e). Our simulations
show that IVB can yield small FR and typical irregular fold trains, as
in Fig. 1, without recourse to thermal-mechanical feedback. Since
the model has no intrinsic length, it is scale independent. IVB is
therefore applicable to folds at the observed mm–m scale, in direct
contrast to the model of Hobbs et al. (2008).

6. Conclusions

Based on the thick-plate buckling theory for power-law rock
materials, R� 5–10 is required to obtain the range FR w 4–15 of
natural single-layer folds. Extrapolation of laboratory creep data
shows that such values of R are attained or exceeded for a wide
range of rock pairs at conditions appropriate to deformation in the
middle to lower crust. Using finite-elements models of buckle folds
without thermal-mechanical feedback (Fig. 3), we demonstrate
that realistic single-layer fold geometries with values of FR as small
as 4 are developed for viscosity ratios on the order of 8–20 in
power-law material with stress exponents of 3–5. The numerical
models are in accord with analytical models describing the initia-
tion and growth of buckle folds in single layers, without recourse to
thermal-mechanical or other feedback processes. The models with
thermal-mechanical feedback presented by Hobbs et al. (2008) are
not capable of driving folding at the smaller scale of typical field
observation, whereas the ‘‘traditional’’ interfacial viscous buckling
is perfectly appropriate.
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